Related Articles

Opioid Self-Administration is Attenuated by Early-Life Experience and Gene Therapy for Anti-Inflammatory IL-10 in the Nucleus Accumbens of Male Rats.

Neuropsychopharmacology. 2017 Oct;42(11):2128-2140

Authors: Lacagnina MJ, Kopec AM, Cox SS, Hanamsagar R, Wells C, Slade S, Grace PM, Watkins LR, Levin ED, Bilbo SD

Early-life conditions can contribute to the propensity for developing neuropsychiatric disease, including substance abuse disorders. However, the long-lasting mechanisms that shape risk or resilience for drug addiction remain unclear. Previous work has shown that a neonatal handling procedure in rats (which promotes enriched maternal care) attenuates morphine conditioning, reduces morphine-induced glial activation, and increases microglial expression of the anti-inflammatory cytokine interleukin-10 (IL-10). We thus hypothesized that anti-inflammatory signaling may underlie the effects of early-life experience on later-life opioid drug-taking. Here we demonstrate that neonatal handling attenuates intravenous self-administration of the opioid remifentanil in a drug-concentration-dependent manner. Transcriptional profiling of the nucleus accumbens (NAc) from handled rats following repeated exposure to remifentanil reveals a suppression of pro-inflammatory cytokine and chemokine gene expression, consistent with an anti-inflammatory phenotype. To determine if anti-inflammatory signaling alters drug-taking behavior, we administered intracranial injections of plasmid DNA encoding IL-10 (pDNA-IL-10) into the NAc of non-handled rats. We discovered that pDNA-IL-10 treatment reduces remifentanil self-administration in a drug-concentration-dependent manner, similar to the effect of handling. In contrast, neither handling nor pDNA-IL-10 treatment alters self-administration of food or sucrose rewards. These collective observations suggest that neuroimmune signaling mechanisms in the NAc are shaped by early-life experience and may modify motivated behaviors for opioid drugs. Moreover, manipulation of the IL-10 signaling pathway represents a novel approach for influencing opioid reinforcement.

PMID: 28436446 [PubMed – indexed for MEDLINE]

Facebook Comments

Autism Chat